Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.957
Filtrar
1.
J Environ Sci (China) ; 142: 279-289, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527893

RESUMO

Metal oxides with oxygen vacancies have a significant impact on catalytic activity for the transformation of organic pollutants in waste-to-energy (WtE) incineration processes. This study aims to investigate the influence of hematite surface oxygen point defects on the formation of environmentally persistent free radicals (EPFRs) from phenolic compounds based on the first-principles calculations. Two oxygen-deficient conditions were considered: oxygen vacancies at the top surface and on the subsurface. Our simulations indicate that the adsorption strength of phenol on the α-Fe2O3(0001) surface is enhanced by the presence of oxygen vacancies. However, the presence of oxygen vacancies has a negative impact on the dissociation of the phenol molecule, particularly for the surface with a defective point at the top layer. Thermo-kinetic parameters were established over a temperature range of 300-1000 K, and lower reaction rate constants were observed for the scission of phenolic O-H bonds over the oxygen-deficient surfaces compared to the pristine surface. The negative effects caused by the oxygen-deficient conditions could be attributed to the local reduction of FeIII to FeII, which lower the oxidizing ability of surface reaction sites. The findings of this study provide us a promising approach to regulate the formation of EPFRs.


Assuntos
Compostos Férricos , Oxigênio , Compostos Férricos/química , Radicais Livres/química , Fenóis , Fenol/química
2.
Chemosphere ; 352: 141307, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307338

RESUMO

The present study compares the effect of using different solvents on the electrochemical properties of the reduced TiO2 nanotubes (TiO2-rNTs) layered Ti/TiO2-rNTs/SnO2-Sb/PbO2 anodes. The electrodes are prepared using three different solvent-based precursors: (i) isopropanol, (ii) ethylene glycol and citric acid (Pechini method), and (iii) 2-hydroxyethylammonium acetate (2HEAA) ionic liquid (IL) via the thermal decomposition route. The decomposition mechanism of precursor solutions was explored using the thermogravimetric (TGA) analysis. Further, the physicochemical properties of the electrodes are examined using Field emission Scanning Electron microscopy (FE-SEM), X-ray diffraction spectroscopy (XRD), and X-ray photoelectron emission spectroscopy (XPS). The results revealed that solvents with higher viscosity and slower decomposition rates support better film uniformity and higher stability of the electrode. The TiO2 -rNTs bottom layer and PbO2 top layer helped obtain higher film stability, increased working potential window (2.2 V vs. SHE) of the electrode, and the repeatability of the results. The performance of different electrodes based on the precursor solution is found as IL â‰« Pechini > Isopropanol. 4-chlorophenol (4-CP) is used as a model pollutant to test the performance of IL-Ti/TiO2-rNTs/SnO2-Sb/PbO2 anode in an anodic oxidation (AO) coupled electro-Fenton (EF) treatment. Further, the reliability of the electrode is evaluated by mineralizing other persistent organic pollutants (POPs) like tetracyclin, phenol, 2-chlorophenol (2-CP), and 2,4-dichlorophenol (2,4-DCP). Under the optimized conditions, the proposed system was able to mineralize the tetracyclin, phenol, 2-CP, 2,4-DCP, and 4-CP up to 78.91, 82.07, 74.96, 78.78, and 69.3 %, respectively. Moreover, the degradation mechanism of chlorophenols is proposed.


Assuntos
Óxidos , Poluentes Químicos da Água , Óxidos/química , Poluentes Orgânicos Persistentes , 2-Propanol , Reprodutibilidade dos Testes , Titânio/química , Oxirredução , Fenóis , Fenol/química , Eletrodos , Solventes , Poluentes Químicos da Água/química
3.
Water Res ; 251: 121106, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38183841

RESUMO

The selective transformation of organics from wastewater to value-added chemicals is considered an upcycling process beneficial for carbon neutrality. Herein, we present an innovative electrocatalytic oxidation (ECO) system aimed at achieving the selective conversion of phenols in wastewater to para-benzoquinone (p-BQ), a valuable chemical widely utilized in the manufacturing and chemical industries. Notably, 96.4% of phenol abatement and 78.9% of p-BQ yield are synchronously obtained over a preferred carbon cloth-supported ruthenium nanoparticles (Ru/C) anode. Such unprecedented results stem from the weak Ru-O bond between the Ru active sites and generated p-BQ, which facilitates the desorption of p-BQ from the anode surface. This property not only prevents the excessive oxidation of the generated p-BQ but also reinstates the Ru active sites essential for the rapid ECO of phenol. Furthermore, this ECO system operates at ambient conditions and obviates the need for potent chemical oxidants, establishing a sustainable avenue for p-BQ production. Importantly, the system efficacy can be adaptable in actual phenol-containing coking wastewater, highlighting its potential practical application prospect. As a proof of concept, we construct an electrified Ru/C membrane for ECO of phenol, attaining phenol removal of 95.8% coupled with p-BQ selectivity of 73.1%, which demonstrates the feasibility of the ECO system in a scalable flow-through operation mode. This work provides a promising ECO strategy for realizing both phenols removal and valuable organics recovery from phenolic wastewater.


Assuntos
Benzoquinonas , Águas Residuárias , Poluentes Químicos da Água , Fenol/química , Fenóis , Carbono , Poluentes Químicos da Água/química
4.
J Mol Graph Model ; 127: 108693, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38070228

RESUMO

Ab initio molecular dynamics studies have been performed on fluorobenzene, phenol, and aniline, which have the three most electronegative atoms, fluorine, oxygen, and nitrogen, respectively. Radial distribution functions show strong hydrogen bonding in the phenolic -OH group, whereas it is less prominent in the -NH2 group of aniline. Fluorobenzene does not show strong hydrogen bonds as no solvation shell is found between the fluorine atom and different aromatic hydrogens of the molecule. Spatial distribution functions show that the nitrogen atom of aniline interacts with the aromatic plane, the oxygen atom of phenol is concentrated near the -OH group and fluorobenzene's fluorine atom interacts with the para hydrogen. Liquid phase dimer structures of these systems reveal that perpendicular orientation (Y-shaped) is preferred over parallel ones. Almost half of the total dimer population tends to prefer 90∘±30° angle. H-bond analyses show that fluorobenzene has the longest mean H-bond lifetime for the H-bond between the aromatic hydrogens and the fluorine atoms, whereas the aniline has the least. The mean lifetime between aromatic hydrogens and electronegative atoms increases steadily from aniline to fluorobenzene. Phenolic -OH and amino -NH2 groups show considerably longer mean H-bond lifetime than the aromatic hydrogens. Gas-phase binding energies obtained from quantum chemical calculations show that aniline and phenol dimers have higher binding energy values than the fluorobenzene dimer. Only the phenol dimer shows a perpendicular structure as a stable one, while aniline and fluorobenzene prefer the parallel orientation.


Assuntos
Flúor , Fluorbenzenos , Ligação de Hidrogênio , Fenol/química , Compostos de Anilina , Oxigênio , Nitrogênio
5.
Bioresour Technol ; 394: 130207, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38109978

RESUMO

The treatment of coking wastewater with high phenol concentrations has been a challenge for conventional biological treatment technology. In this short communication, phenol-degrading bacteria domesticated by micro and nano bubbles (MNBs) water are used to treat the high- concentration phenol in an MNBs aeration reactor (MNB-AR). The results show that the MNB-AR can greatly improve the removal of phenol and chemical oxygen demand (COD). At a phenol concentration of 1000 mg L-1, the phenol and COD removal rates in the MNB-AR are 55 % and 39 % higher than in the conventional bubble aeration reactor respectively. MNB-AR performs more stably and reaches a higher phenol tolerance under fluctuating high-phenol-concentration loadings. Metagenomic analysis shows that MNBs promote the growth and metabolism of aerobic microorganisms related to phenol degradation, and enhance gene abundance related to carbon metabolism. MNBs aeration combined with microorganisms is an efficient solution for treating coking wastewater.


Assuntos
Benzenossulfonatos , Coque , Microbiota , Águas Residuárias , Fenol/química , Análise da Demanda Biológica de Oxigênio , Fenóis , Redes e Vias Metabólicas , Reatores Biológicos/microbiologia
6.
Sci Rep ; 13(1): 21901, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081934

RESUMO

Environmental pollution is a global phenomenon and troublesome fact that poses a grave risk to all living entities. Via coupling carbonaceous feedstocks with outstanding microbial activity, kinetic experiments were established using the consortium of Proteus mirabilis and Raoultella planticola, biochar-derived sunflower seed husk (SHB) and rice straw (RSB), and their composites, which investigated at 30 °C (150 rpm) to eliminate 700 mg L-1 lead (120 h) and phenol (168 h) from synthetic wastewater. The derived biochars physicochemical properties of were studied. According to adsorption capacity (qe), consortium-SHB composites and consortium-RSB composites removed lead completely (70 mg g-1) within 48 h and 66 h, respectively. Besides, phenol was remediated entirely after 42 h and 48 h by both composite systems (69.90 mg g-1), respectively, comparing with bacterial consortium only or parent SHB and RSB. Moreover, four kinetic models were studied to describe the bioremediation process. Fractional power and Elovich models could be recommended for describing the adsorption kinetics for lead and phenol removal by the studied biomaterials with high correlation coefficient (R2 ≥ 0.91 for Pb2+ and ≥ 0.93 for phenol) and lower residual root mean square error (RMSE) and chi-square (X2). Overall, bacterial consortium-biochar composites exhibited greater remediation of lead and phenol than the sum of each single bacterial consortium and biochar systems; reflecting synergistic interaction of adsorptive capability of biochar and metabolic performance of bacterial consortium, as denoted by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The current study addressed the successful design of employing functional remediating consortium immobilized on waste biomass-derived biochar as a conducive alternative eco-sorbent and economic platform to detoxify organic and inorganic pollutants.


Assuntos
Helianthus , Oryza , Poluentes Químicos da Água , Purificação da Água , Adsorção , Biodegradação Ambiental , Carvão Vegetal/química , Cinética , Chumbo , Fenol/química , Fenóis , Sementes/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos
7.
Environ Sci Pollut Res Int ; 30(57): 120763-120774, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37943438

RESUMO

In this study, coal bottom ash from a thermoelectric plant was tested as an alternative Fenton catalyst for phenol degradation in water. The effect of operating parameters such as initial pH, catalyst dosage and H2O2 concentration were evaluated. The characterization results indicated that the material has a mesoporous structure, with active species (Fe) well distributed on its surface. Under the optimal reaction conditions (6 mM H2O2, 1 g L-1 of catalyst and pH = 3), 98.7% phenol degradation efficiency was achieved in 60 min, as well as 71.6% TOC removal after 150 min. Hydroxyl radical was identified as the main oxidizing agent involved on the cleavage of the phenol molecule. After four consecutive reuse cycles, phenol degradation efficiency was around 80%, indicating good reusability and stability of the catalyst. Therefore, the obtained results demonstrated that the bottom ash presents remarkable activity for application in the Fenton reaction towards phenol degradation.


Assuntos
Cinza de Carvão , Fenol , Fenol/química , Peróxido de Hidrogênio/química , Oxirredução , Fenóis , Água , Catálise
8.
Int J Pharm ; 648: 123600, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37967687

RESUMO

Multidose formulations have patient-centric advantages over single-dose formats. A major challenge in developing multidose formulations is the prevention of microbial growth that can potentially be introduced during multiple drawings. The incorporation of antimicrobial preservatives (APs) is a common approach to inhibit this microbial growth. Selection of the right preservative while maintaining drug product stability is often challenging. We explored the effects of three APs, 1.1 % (w/v) benzyl alcohol, 0.62 % (w/v) phenol, and 0.42 % (w/v) m-cresol, on a model immunoglobulin G1 monoclonal antibody, termed the "NIST mAb." As measured by hydrogen exchange-mass spectrometry (HX-MS) and differential scanning calorimetry, conformational stability was decreased in the presence of APs. Specifically, flexibility (faster HX) was significantly increased in the CH2 domain (HC 238-255) across all APs. The addition of phenol caused the greatest conformational destabilization, followed by m-cresol and benzyl alcohol. Storage stability studies conducted by subvisible particle (SVP) analysis at 40 °C over 4 weeks further revealed an increase in SVPs in the presence of phenol and m-cresol but not in the presence of benzyl alcohol. However, as monitored by size exclusion chromatography, there was neither a significant change in the monomeric content nor an accumulation of soluble aggregate in the presence of APs.


Assuntos
Anti-Infecciosos , Anticorpos Monoclonais , Humanos , Anticorpos Monoclonais/química , Conservantes Farmacêuticos , Cresóis/química , Fenol/química , Anti-Infecciosos/química , Álcoois Benzílicos
9.
Water Sci Technol ; 88(9): 2332-2343, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37966186

RESUMO

Hydroxyapatite (HAP) is a material renowned for its exceptional capabilities in adsorbing and exchanging heavy metal ions, making it a widely employed substance within the environmental domain. This study aims to present a novel material, namely copper-HAP (Cu-HAP), which was synthesized via an ion exchange method. The resulting material underwent comprehensive characterization using scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and Brunauer-Emmett-Teller (BET) analysis. Subsequently, based on the principle of the Fenton-like oxidation reaction, the material was used for the degradation of phenol. The outcomes of the investigation revealed that the optimal preparation conditions for the catalyst were achieved at a temperature of 40 °C, a pH value of 5, and a relative dosage of Cu-HAP at 100 mg/g. Under the reaction conditions of a catalyst dosage of 2 g/L, a 30% hydrogen peroxide concentration of 30 mM, a phenol concentration of 20 mg/L, a pH value of 6, a temperature of 40 °C, and the degradation rate of phenol impressively reached 98.12%. Furthermore, the degradation rate remained at 42.31% even after five consecutive cycles, indicating the promising potential of Cu-HAP in the treatment of recalcitrant organic compounds within this field.


Assuntos
Cobre , Fenol , Fenol/química , Cobre/química , Troca Iônica , Durapatita , Fenóis , Catálise
10.
Environ Sci Pollut Res Int ; 30(58): 122611-122624, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37971593

RESUMO

Phenol is one of the important ingredients of pyrolysis oil, contributing to the high biotoxicity of pyrolysis oil. To promote the degradation and conversion of phenol during anaerobic digestion, cheap hydro-chars with high phenol adsorption capacity were produced. The phenol adsorption capabilities of the plain hydro-char, plasma modified hydro-char at 25 °C (HC-NH3-P-25) and 500 °C (HC-NH3-P-500) were evaluated, and their adsorption kinetics and thermodynamics were explored. Experimental results indicate that the phenol adsorption capability of HC-NH3-P-500 was the highest. The phenol adsorption kinetics of all samples followed the pseudo-second-order equation and interparticle diffusion model, indicating that the adsorption rate of phenol was controlled by interparticle diffusion and chemistry adsorption simultaneously. By DFT calculations, π-π stacking and hydrogen bond are the main interactions for phenol adsorption. It was observed that an enriched graphite N content decreased the average vertical distance between hydro-chars and phenol in π-π stacking complex, from 3.5120 to 3.4532 Å, causing an increase in the negative adsorption energy between phenol and hydro-char from 13.9330 to 23.4181 kJ/mol. For hydrogen bond complex, the average vertical distance decreased from 3.4885 to 3.3386 Å due to the increase in graphite N content; causing the corresponding negative adsorption energy increased from 19.0233 to 19.9517 kJ/mol. Additionally, the presence of graphite N in the hydro-char created a positive diffusion region and enhanced the electron density between hydro-char and phenol. Analyses suggest that enriched graphite N contributed to the adsorption complex stability, resulting in an improved phenol adsorption capacity.


Assuntos
Grafite , Fenol , Fenol/química , Carvão Vegetal/química , Adsorção , Pirólise , Fenóis , Cinética
11.
Chemosphere ; 345: 140400, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863212

RESUMO

Highly efficient, separable, and stable magnetic iron-based-photocatalysts produced from ultra-stable Y (USY) zeolite were applied, for the first time, to the photo-Fenton removal of phenol under solar light. USY Zeolite with a Si/Al molar ratio of 385 was impregnated under vacuum with an aqueous solution of Fe2+ ions and thermally treated (500-750 °C) in a reducing atmosphere. Three catalysts, Fe-USY500°C-2h, Fe-USY600°C-2h and Fe-USY750°C-2h, containing different amounts of reduced iron species entrapped in the zeolitic matrix, were obtained. The catalysts were thoroughly characterized by absorption spectrometry, X-ray powder diffraction with synchrotron source, followed by Rietveld analysis, X-ray photoelectron spectroscopy, N2 adsorption/desorption at -196 °C, high-resolution transmission electron microscopy and magnetic measurements at room temperature. The catalytic activity was evaluated in a recirculating batch photoreactor irradiated by solar light with online analysis of evolved CO2. Photo-Fenton results showed that the catalyst obtained by thermal treatment at 500 °C for 2 h under a reducing atmosphere (FeUSY-500°C-2h) was able to completely mineralize phenol in 120 min of irradiation time at pH = 4 owing to the presence of a higher content of entrapped nano-sized magnetite particles. The latter promotes the generation of hydroxyl radicals in a more efficient way than the Fe-USY catalysts prepared at 600 and 750 °C because of the higher Fe3O4 content in ultra-stable Y zeolite treated at 500 °C. The FeUSY-500°C-2h catalyst was recovered from the treated water through magnetic separation and reused five times without any significant worsening of phenol mineralization performances. The characterization of the FeUSY-500°C-2h after the photo-Fenton process demonstrated that it was perfectly stable during the reaction. The optimized catalyst was also effective in the mineralization of phenol in tap water. Finally, a possible photo-Fenton mechanism for phenol mineralization was assessed based on experimental tests carried out in the presence of scavenger molecules, demonstrating that hydroxyl radicals play a major role.


Assuntos
Fenol , Zeolitas , Fenol/química , Ferro/química , Fenóis , Água , Peróxido de Hidrogênio/química , Catálise
12.
Environ Res ; 235: 116657, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37451579

RESUMO

In this study, TiO2 was generated in situ on the surface of Ti3C2 by a hydrothermal process, and urea was added to form N-doped TiO2-Ti3C2. The surface morphology and functional group properties of the prepared materials were analyzed by SEM, TEM, XRD, XPS, etc. The results showed that anatase TiO2 formed on the surface of the Ti3C2 monolayer. Nitrogen-doped nanomaterials show good phenol degradation and good recyclability under visible light. At a urea content of 0.5 g, the photocatalytic degradation of phenol under visible light is best, reaching 88.9% in 3 h, with ·OH and ·O2- holes playing the leading role. However, at lower pH and higher ion concentration, the degradability of N-TiO2-Ti3C2 for phenol is reduced. Furthermore, the material prepared in this work is a two-dimensional layered material, and the adsorption of phenol best fits the Langmuir adsorption isotherm model and the pseudo-second-order kinetic equation. In terms of the antibacterial performance of the material, the N-doped TiO2-Ti3C2 nanomaterial made with 0.2 g of urea has an Escherichia coli scavenging efficiency of about 97.86%, which is an excellent antibacterial material. This study shows that the N-TiO2-Ti3C2 produced in this experiment can be used for environmental applications.


Assuntos
Poluentes Ambientais , Titânio , Titânio/química , Luz , Fenol/química , Fenóis , Antibacterianos/farmacologia , Oxigênio , Catálise
13.
Proc Jpn Acad Ser B Phys Biol Sci ; 99(7): 198-212, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37518009

RESUMO

The recent industrial growth has made our lives more comfortable; however, it has led to an increase in the concentration of harmful compounds, such as carbon monoxide, volatile organic compounds (e.g., toluene), and phenolic compounds (e.g., phenol and cresol), in the environment. Catalytic oxidation using environmental catalysts is an important method for the removal of harmful compounds. To date, novel environmental catalysts have been developed from unique concepts based on solid-state ionics. In particular, the oxygen supply ability of a promoter can supply active oxygen from inside the lattice to the catalytically active site. Our catalysts exhibited high activity for the oxidation of harmful chemicals under moderate conditions in both the gaseous and liquid phases compared to conventional catalysts. This short review article describes our concepts of material design and our novel catalysts (ceria-zirconia (CeO2-ZrO2), apatite-type lanthanum silicate (La10Si6O27), and lanthanum oxyfluoride (LaOF) based catalysts).


Assuntos
Oxigênio , Compostos Orgânicos Voláteis , Oxigênio/química , Lantânio/química , Oxirredução , Fenol/química , Catálise
14.
Int J Biol Macromol ; 248: 125947, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37482163

RESUMO

Phenolic foams are typically produced from phenolic resins, using phenol and formaldehyde precursors. Therefore, common phenolic foams are non-sustainable, comprising growing environmental, health, and economic concerns. In this work, lignin extracted from pine wood residues using a "green" levulinic acid-based solvent, was used to partially substitute non-sustainable phenol. The novel engineered foams were systematically compared to foams composed of different types of commercially available technical lignins. Different features were analyzed, such as foam density, microstructure (electron microscopy), surface hydrophilicity (contact angle), chemical grafting (infrared spectroscopy) and mechanical and thermal features. Overall, it was observed that up to 30 wt% of phenol can be substituted by the new type of lignin, without compromising the foam properties. This work provides a new insights on the development of novel lignin-based foams as a very promising sustainable and renewable alternative to petrol-based counterparts.


Assuntos
Lignina , Pinus , Lignina/química , Fenóis/química , Fenol/química , Madeira/química
15.
Chemosphere ; 336: 139200, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37321456

RESUMO

A high-performance, durable, low-cost, and environmentally friendly catalyst is highly desired in advanced oxidation processes (AOPs) for water treatment. Considering the activity of Mn(Ⅲ) and the superior catalytic properties of reduced graphene oxide (rGO) in peroxymonosulfate (PMS) activation, rGO-modified MnOOH nanowires (MnOOH-rGO) were fabricated by a hydrothermal method for phenol degradation. The results showed that the composite synthesized at 120 °C with 1 wt% rGO dopant exhibited the best performance for phenol degradation. Nearly 100% of the phenol was removed by MnOOH-rGO within 30 min, which is higher than the removal rate of pure MnOOH (70%). The effects of catalyst dosages, PMS concentration, pH, temperature, and anions (Cl-, NO3-, HPO42-and HCO3-) on phenol degradation were investigated. The removal rate of chemical oxygen demand (COD) reached 26.4%, with a low molar ratio of PMS to phenol at 5:1 and a high PMS utilization efficiency (PUE) of 88.8%. The phenol removal rate remained more than 90% after five recycle with less than 0.1 mg L-1 leakage of manganese ions. Together with the results of radical quenching experiments, X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance spectroscopy (EPR), electron transfer and 1O2 were proved to dominate the activation process. During the direct electrons transfer process, the electrons transfer from the phenol to PMS by using the Mn(Ⅲ) as the mediate with a stoichiometric ratio between PMS and phenol at 1:2, which mainly contributed to the high PUE. This work provides new insight into a high-performance Mn(Ⅲ) based catalyst on PMS activation with high PUE, good reusability, and environmentally friendly for removing organic pollutants.


Assuntos
Peróxidos , Fenol , Peróxidos/química , Fenol/química , Fenóis
16.
Environ Sci Pollut Res Int ; 30(34): 82795-82806, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37336851

RESUMO

The Brazil nut shell was used as a precursor material for preparing activated carbon by chemical activation with potassium hydroxide. The obtained material (BNSAC) was characterized, and the adsorptive features of phenol were investigated. The characterization showed that the activated carbon presented several rounded cavities along the surface, with a specific surface area of 332 m2 g-1. Concerning phenol adsorption, it was favored using an adsorbent dosage of 0.75 g L-1 and pH 6. The kinetic investigation revealed that the system approached the equilibrium in around 180 min, and the Elovich model represented the kinetic curves. The Sips model well represented the equilibrium isotherms. In addition, the increase in temperature from 25 to 55 °C favored the phenol adsorption, increasing the maximum adsorption capacity value (qs) from 83 to 99 mg g-1. According to the estimated thermodynamic parameters, the adsorption was spontaneous, favorable, endothermic, and governed by physical interactions. Therefore, the Brazil nut shell proved a good precursor material for preparing efficient activated carbon for phenol removal.


Assuntos
Bertholletia , Poluentes Químicos da Água , Fenol/química , Carvão Vegetal/química , Concentração de Íons de Hidrogênio , Fenóis , Termodinâmica , Adsorção , Água , Cinética , Poluentes Químicos da Água/análise , Soluções
17.
Environ Sci Technol ; 57(47): 18981-18990, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37226837

RESUMO

Monobromamine (NH2Br) and dibromamine (NHBr2) produced from reactions of hypobromous acid (HOBr) with ammonia can react with phenolic structures of natural organic matter (NOM) to produce disinfection byproducts such as bromoform (CHBr3). The reactivity of NH2Br was controlled by the reaction of the bromoammonium ion (NH3Br+) with phenolate species, with specific rate constants ranging from 6.32 × 102 for 2,4,6-tribromophenol to 1.22 × 108 M-1 s-1 for phenol. Reactions of NHBr2 with phenol and bromophenols were negligible compared to its self-decomposition; rate constants could be determined only with resorcinol for pH > 7. At pH 8.1-8.2, no formation of CHBr3 was observed from the reaction of NH2Br with phenol while the reaction of NH2Br with resorcinol produced a significant concentration of CHBr3. In contrast to NH2Br, a significant amount of CHBr3 produced with an excess of NHBr2 over phenol was explained by the reactions of HOBr produced from NHBr2 decomposition. A comprehensive kinetic model including the formation and decomposition of bromamines and the reactivity of HOBr and NH2Br with phenolic compounds was developed at pH 8.0-8.3. Furthermore, the kinetic model was used to evaluate the significance of the NH2Br and NHBr2 reactions with the phenolic structures of two NOM isolates.


Assuntos
Fenóis , Purificação da Água , Bromatos/química , Fenol/química , Resorcinóis , Cinética
18.
Biometals ; 36(5): 1081-1108, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37209221

RESUMO

Bacillus toyonensis SFC 500-1E is a member of the consortium SFC 500-1 able to remove Cr(VI) and simultaneously tolerate high phenol concentrations. In order to elucidate mechanisms utilized by this strain during the bioremediation process, the differential expression pattern of proteins was analyzed when it grew with or without Cr(VI) (10 mg/L) and Cr(VI) + phenol (10 and 300 mg/L), through two complementary proteomic approaches: gel-based (Gel-LC) and gel-free (shotgun) nanoUHPLC-ESI-MS/MS. A total of 400 differentially expressed proteins were identified, out of which 152 proteins were down-regulated under Cr(VI) and 205 up-regulated in the presence of Cr(VI) + phenol, suggesting the extra effort made by the strain to adapt itself and keep growing when phenol was also added. The major metabolic pathways affected include carbohydrate and energetic metabolism, followed by lipid and amino acid metabolism. Particularly interesting were also ABC transporters and the iron-siderophore transporter as well as transcriptional regulators that can bind metals. Stress-associated global response involving the expression of thioredoxins, SOS response, and chaperones appears to be crucial for the survival of this strain under treatment with both contaminants. This research not only provided a deeper understanding of B. toyonensis SFC 500-1E metabolic role in Cr(VI) and phenol bioremediation process but also allowed us to complete an overview of the consortium SFC 500-1 behavior. This may contribute to an improvement in its use as a bioremediation strategy and also provides a baseline for further research.


Assuntos
Fenol , Proteômica , Biodegradação Ambiental , Cromo/química , Fenol/química , Fenol/metabolismo , Fenóis , Espectrometria de Massas em Tandem
19.
Chemosphere ; 330: 138641, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37031837

RESUMO

The fast and efficient removal of organic pollutants (e.g., phenolics) remains one of the focus problems in environment pollution. Thus, a chitin-derived biochar with nitrogen doping (N-BC) was successfully prepared at a lower calcination temperature of 600 °C, which is environmentally friendly and energy saving. The N-BC was analyzed by SEM, FTIR, BET, XRD, XPS and Raman spectroscopy to confirm that the doping of nitrogen element provided sufficient defect sites to promote the activation of persulfate (PDS). Quenching experiments and EPR results revealed the presence of •OH and •O2- contributed to phenol degradation in N-BC 600/PDS system. In addition, the linear sweep voltammogram experiments also demonstrated the existence of electron transfer pathway. The electrons were donated from phenol and shifted to PDS through N-BC. The graphitic N and carbon defects in N-BC served as the active sites of the reaction and involved absorption and transfer of electrons as the key character. Moreover, the removal rates of phenol and TOC reached 98.8% and 58.2% within 2 h, indicating that N-BC effectively activated the persulfate to degrade phenol. This study provides the theoretical support and potential applications for the activation of persulfate by nitrogen-doped biochar to degrade other phenolic compounds.


Assuntos
Elétrons , Nitrogênio , Nitrogênio/química , Quitina , Carvão Vegetal/química , Fenol/química , Fenóis
20.
Water Environ Res ; 95(5): e10872, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37113106

RESUMO

In the present study, orange peel biochar has been utilized as the adsorbent for the removal of phenol from contaminated water. The biochar was prepared by thermal activation process at three different temperature 300, 500 and 700°C and are defined as B300, B500, and B700 respectively. The synthesized biochar has been characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FTIR), RAMAN spectroscopy, X-ray photoelectron spectroscopy (XPS), and UV-Vis spectroscopy. SEM analysis revealed a highly irregular and porous structure for B700 as compared with others. The parameters such as initial phenol concentration, pH, adsorption dosage, and contact time were optimized, and the maximum adsorption efficiency and capacity of about 99.2% and 31.0 mg/g was achieved for B700 for phenol adsorption. The Branauer-Emmett-Teller (BET) surface area and Berrate-Joyner-Halenda (BJH) pore diameter obtained for B700 were about 67.5 m2 /g and 3.8 nm. The adsorption of phenol onto the biochar followed Langmuir isotherm showing linear fit with R2 = 0.99, indicating monolayer adsorption. The kinetic data for adsorption is best fitted for pseudo-second order. The thermodynamic parameters ΔG°, ΔH°, and ΔS° values obtained are negative, which means that the adsorption process is spontaneous and exothermic. The adsorption efficiency of phenol marginally declined from 99.2% to 50.12% after five consecutive reuse cycles. The study shows that the high-temperature activation increased the porosity and number of active sites over the orange peel biochar for efficient adsorption of phenol. PRACTITIONER POINTS: Orange peel is thermally activated at 300, 500, and 700°C for structure modification. Orange peel biochars were characterized for its structure, morphology, functional groups, and adsorption behavior. High-temperature activation improved the adsorption efficiency up to 99.21% due to high porosity.


Assuntos
Citrus sinensis , Poluentes Químicos da Água , Fenol/análise , Fenol/química , Água , Poluentes Químicos da Água/química , Termodinâmica , Espectroscopia de Infravermelho com Transformada de Fourier , Adsorção , Cinética , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...